Colloquium, 11/15/2012

UAHuntsville Distinguished Lecture Series

Integrable Models in Statistical Physics and Their Universality

Craig A. Tracy
Distinguished Professor
Department of Mathematics
University of California, Davis

3:00 Thursday, 15 November 2012
111 Salmon Library


The 2D Ising model, random matrix models and the asymmetric simple exclusion process (ASEP) are three examples of integrable stochastic models. We explain how these three examples have led to more general theories and in the case of ASEP, experimental verification.

Biographical Sketch

Professor Craig Arnold Tracy is an American mathematician, known for his contributions to mathematical physics and probability theory.  Born in United Kingdom, he moved as infant to Missouri where he grew up and obtained a B.Sc.
in physics from University of Missouri (1967). He studied as a Woodrow Wilson Fellow at the Stony Brook University where he obtained a Ph.D. on the thesis entitled Spin-Spin Scale-Functions in the Ising and XY-Models (1973) advised by Barry
M. McCoy, in which (also jointly with Tai Tsun Wu and Eytan Barouch) he studied Painlevé functions in exactly solvable statistical mechanical models. He then was on the faculty of Dartmouth College (1978–84) before joining University of California, Davis (1984) where he is now a distinguished professor. With Harold Widom he worked on the asymptotic analysis of Toeplitz determinants and their various operator theoretic generalizations. This work gave them both the George Pólya and the Norbert Wiener prizes, and the Tracy–Widom distribution is named after them.