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Engineering majors require a strong foundation in engineering mathematics in order to 
become comfortable with fundamental principles in various core courses. By the end of the 
sophomore year, most students should have completed the equivalent of four semesters of 
college level math, culminating in concepts associated with solution of ordinary differential 
equations and linear algebra principles. Often, students find it difficult to make the connection 
between the basic mathematics taught in the math courses and the math required as a tool for 
engineering courses. The purpose of this document is to highlight the relevant math concepts in 
the context of engineering courses. This single document focuses on the most important 
mathematical concepts/jargon that you will require to enable you to study math and engineering 
textbooks on your own. A complete mastery of the material discussed here is expected of all 
undergraduate students entering the junior year; you should be familiar with most concepts by 
the middle of the sophomore year. It is suggested that you review this material each semester so 
that the concepts become second nature to you; learn to interpret and commit all formulae to 
memory – the most important ones are highlighted. It will also serve you well if you intend to 
pursue graduate studies in engineering. To fully comprehend the material and to see worked out 
examples you will of course have to refer to any math book that discusses these concepts in more 
detail. 
 Here is a listing of topics discussed in this document. 

A) The Derivative 
B) Principle of Dimensional Consistency 
C) Differentials 
D) Chain Rule 
E) Polynomials 
F) Taylor Series 
G) Multivariable Functions and Partial Derivatives 
H) Simplest Ordinary Differential Equations 
I) Integration 
J) Grad, Div, Curl, and all that 
K) Elementary Linear Algebra 
L) Complex Numbers and Complex Variables 

 
 
 
A. The Derivative 
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Given a function )(xfy  , sometimes denoted as )(xy , the derivative, denoted by )(' xy  

or )(' xf  is formally defined by the limit: 
 

   
x

xyxxy

dx

dy
x 





lim

0
        (1) 

 
Note that the engineering units of the derivative will be the units of y divided by the units of x. 
Thus if y has the units of energy in kcal, and x has the units of time in seconds, the quantity 

)(' xy  will have the units of power in kcal/sec.  For simplicity, we will use the notation, [y] to 
denote the dimensions of, or units of, y. Thus, read 

  "" of units"or  " of dimensions" as  yyy       (2) 
 

B. Principle of Dimensional Consistency 
It is always useful to know the dimensions of every quantity so that in an equation, one 

can check if indeed “apples are added to apples” and not to “oranges”. Consider the algebraic 
equation: 

2

2

1
atuts   that you used in physics. Here s denotes distance, u is the initial particle velocity, 

a is the acceleration and t is time. Every term, namely, the quantities s, ut, and ½ at2 all have to 
have dimensions of length. The standard dimensions are length (L), time (t), mass (M), Force 
(F), and temperature (T). Units refer to the actual engineering basis for measuring these 
quantities. Thus the dimension length is measured in units of meters, time in seconds, mass in 
kilograms, force in Newtons, and temperature in degrees Kelvin, etc. If for instance you have 
forgotten the exponent associated with t in the second term, i.e., you cannot recall if it is “t 
squared” or “t cubed,” then the principle of dimensional consistency is especially handy. 
Working with SI units, s being distance has to be in meters. The quantity u is in m/s and t is in 
seconds, thus ut has units of m. Next, note that the coefficient ½ does not have units or is a 
dimensionless constant. Since a denotes acceleration, it has units of m/s2. This indicates that t has 
to have the exponent 2, so that at2 ends up with units of meters. This kind of sanity check applies 
to all equations – algebraic, ordinary, or partial differential equations. We will refer to this 
principle as the principle of dimensional consistency in equations that arise in all engineering 
courses. 

The principle of dimensional consistency requires that, the dimension of every term in an 
equation, be it, algebraic, or differential, has to be identical. In addition, arguments of 
transcendental functions (those that cannot be expressed as equivalent finite number of 
algebraic functions, example exp, sin, cosine, log, etc.) that appear in an equation have to 
be dimensionless. 

 
Get into the habit of using this principle and it will serve you well in engineering practice. It will 
allow you spot errors in equations. It is a necessary, but not sufficient condition, to carry out 
meaningful engineering calculations. Apply this principle to the Bernoulli equation that arises in 

the study of fluid mechanics.  It states: constant
2

1 2  ghVp  or constant
2

2

 h
g

V

g

P


, 
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where p is the static fluid pressure,  is fluid density, V is velocity, g is acceleration due to 
gravity and h is vertical height. In the first form, all terms have dimensions of pressure (force per 
unit area), while in the second form, all terms have dimensions of length. 
 
C. Differentials 
 

Often you will come across expressions involving a differential quantity such as: 

dx
dx

dy
dy            (3) 

in which it appears at first glance that the dx’s have cancelled each other out. A more useful way 
to think about the meaning of (3) is: 

change in y (or dy) = (rate of change of y with respect to x) times (change in x) (4) 
One can extend this notion and write 

    dx
dx

dy
xydxxy          (5) 

which states that the value of y at x+dx is given by its value at x (the first term on the right hand 
side of (5)) plus (the rate of change of y with respect to changes in x) times (change in x, namely 
dx). Note that dimensions of all terms in (5) also work out correctly. Can you figure out 

)2/( dxxy   and )2/( dxxy  ? Simply replace “dx” in (5) by “+dx/2” or “-dx/2” to get the result. 
Application of this concept is usually tied to a neatly labeled sketch, in which the axis (x-axis in 
this case) is clearly indicated, with the arrowhead denoting the direction of increasing x. 
 

The second derivative of y with respect to x is denoted as 
2

2

dx

yd
 or )('' xy .  The prime 

notation is useful for first, second, and perhaps third derivative, but is often not used beyond that.  
If it is, for example, the n-th derivative of y, it  is denoted by )()( xy n . 

What are the dimensions of 
2

2

dx

yd
? Answer:

 
 22

2

x

y

dx

yd









. If y has units of meters, and x is in 

seconds, the quantity 
2

2

dx

yd
denotes acceleration with units of m/s2. 

 
D. Chain Rule 
 

If y = g(f(x)), then the derivative 

dx

df

df

dg

dx

dg

dx

dy
          (6) 

Note that the quantity
df

dg
 denotes the rate of change of g with respect to changes in f or the rate 

of change of g with respect to changes in its argument. The quantity g has f as its argument, 
while the quantity f has x as its argument. One can of course extend this notion and thus if 

)))((( xfhgy  , then 

dx

df

df

dh

dh

dg

dx

dy
          (7) 
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Note that 
dx

dy
denotes the rate at which y changes with respect to changes in x. A quick check of 

dimensions in (7) reveals that: 
 
 

 
 

 
 

 
 x

f

f

h

h

y

x

y
          (8) 

Note that the dimensions of h and dimensions of f cancel out on the right hand side of (8) as they 
appear in both the numerator and denominator, leaving the dimensions of y in the numerator and 
that of x in the denominator. Master the concept of chain rule and it will serve you well in 
engineering/physics courses. 
 
E. Polynomials 
 

The simplest polynomial is a constant, also considered as a polynomial of degree 0. Thus, 
cxP )(0           (9) 

The next, in terms of simplicity, is a linear function of x. It can be written as  
xccxP 101 )(           (10) 

where c0 and c1 are constants, referred to as coefficients. 
A polynomial of degree n is given by 

n
n

n
nn xcxcxcxcxccxP  


1
1

3
3

2
210)(       (11) 

It can be written compactly using the “sigma” or summation notation 





n

k

k
kn xcxP

0

)(          (12) 

where k is a dummy index that ranges from 0 through n. It does not matter if we used any other 
symbol for the dummy index. Thus, on the right hand side of (12), we could use any index such 
as i, j, l, etc., but not n. Note that )(xPn is characterized by (n+1) constant coefficients, c0, c1, c2, 

…cn.  Pay attention to the notation – cm denotes the coefficient of the term containing xm. The 
nice feature exhibited by polynomials, is that they remain polynomials when differentiated with 
respect to x. They are also easy to evaluate, differentiate, and integrate. It is easy to evaluate their 
roots, i.e., values of x at which 0)( xPn . Programs such as MATLAB have very simple 

commands to work with and manipulate polynomials and perform these tasks for you. Two 
polynomials are equal only iff (i.e., if and only if) they are of the same degree and if all of their 
corresponding coefficients are equal to each other. What will be the degree of the derivative of a 
polynomial of degree n? Can you work out what its “c0, c1, c2, …cn-1” are and how they relate to 
the “c0, c1, c2, …cn “ associated with the original polynomial? 
 

There is a special polynomial known as the Taylor polynomial which approximates a 
general function (not necessarily a polynomial) f(x). It has the property that the values of the 
polynomial and its first n derivatives at a given point x = a, are identical to the values of the 
function f and its first n derivatives at the same point x = a (try expressing this sentence through a 
set of n+1 equations). It is given by: 
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    (13) 

 
Notice that the dummy index (m in this case) with summation notation is a compact way of 
writing the polynomial. Note that 

)()(

,),('')(''),(')('),()(
)()( afaP

afaPafaPafaP
nn

n

nnn



 
     (14) 

The difference between f(x) and Pn(x) is called the remainder and is given by 

    1
)1(

!1

)(
)()()( 






 n
n

nn ax
n

f
xPxfxR


      (15) 

where   is an unknown number that lies in the interval (a, x). Since the (n+1) th derivative of a 
polynomial of degree n is zero (check this with simple examples that you construct on your 
own), the remainder is identically zero (meaning it is zero for all values of x, not just at a single 
value of x) in the case of a Taylor polynomial written for function that is a polynomial of degree 
n. For sufficiently smooth functions (simply put, for functions that can be differentiated again 
and again without any of its derivatives blowing up when evaluated at x = a), the remainder 
becomes vanishingly small as the number n approaches infinity. This leads us to the concept of a 
Taylor series 
  
F. Taylor Series 
 

The Taylor series of a function f(x) in the neighborhood of a point x = a, is an infinite 
series given by: 

 

 

 





 



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     (16) 

 
To clarify, note that obtaining an expression for the Taylor series of a function in the 
neighborhood of a point x = a does not mean set x to a, but instead it means the series will 
contain infinite powers of (x-a). A special case of the Taylor series is the Maclaurin series, 
which is the Taylor series expansion in the neighborhood of the point x = 0. It is given by 
(setting a = 0 in (16)) 

    




)0(
!

)0(''
!2

)0(')0(0
!

)0(
)( )(

2

0

)(
n

n
m

m

m

f
n

x
f

x
fxfx

m

f
xf  (17) 

The Taylor series concept is very useful in developing numerical methods for differentiation, 
integration, and polynomial approximation. These form the foundations of computational 
algorithms used to solve ordinary and partial differential equations.  The Taylor series of a 
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function is unique, which implies that if an infinite power series (i.e., involving only positive 
integer powers of (x-a)) is obtained for a function via another method, then you have its Taylor 
series! Learn to obtain the Taylor series approximations in the neighborhood of x = 0 for 

)cos(),sin(),exp( xxx . What if the neighborhood is around x ? Which of these is an even/odd 
function of x? Can you figure that out by examining the Taylor series? Note that a function is 
even if switching the sign of its argument leaves its value unchanged, it is odd, if switching the 
sign of its argument causes the sign of the function to switch, while leaving its magnitude 
unchanged. Put in mathematical terms, 








)()( if odd

)()( ifeven 
 is )(

tftf

tftf
xf        (18) 

Note that the argument is denoted as t to make the point that the argument here is a dummy 
variable that can be denoted by any symbol. The Taylor series for  xxf   in the neighborhood 
of x, is useful and is readily obtained by replacing x by xx  , and a by x in the general formula 
(16). The result is: 

 

sHOTxf
n

x
xf

x

xf
x

xf
x

xxfxfxxf

n
n

')(
!
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!4

)('''
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)()4(
4

32

















    (19) 

where HOT’s stands for ‘Higher Order Terms’.  Note the pattern in the series expression. 
Consider (5), in light of this discussion pertaining to Taylor series.  It represents a first order 
approximation to (19) (the order refers to the power of x in the terms retained). 
 
G. Multivariable Functions and Partial Derivatives 
 

When a function f depends on more than one independent variable, say two independent 
variables x and y. Thus, 

),( yxff            (20) 

Then it has two first partial derivatives, denoted by
y

f

x

f







, (read as “partial f partial x” and 

“partial f partial y” or more precisely “partial derivative of f with respect to x” and “partial 
derivative of f with respect to y”), wherein it is understood that only changes with respect to x (or 

y) are considered while keeping the other variable y (or x) fixed. Thus, in evaluating 
x

f




, y is 

simply treated as a constant (note that it is not a constant as such in general). Its formal definition 
is: 

   
x

yxfyxxf

xx

f








 ,,

lim
0

       (21) 

Note the dimensions:
 
 x

f

x

f








 

Three second derivatives exist – they are 
yx

f

y

f

x

f








 2

2

2

2

2

,, . In the case of the last one, the order 

of differentiation doesn’t matter (i.e., one can differentiate with respect to y first and then x or the 
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other way around) if both mixed partial derivatives are continuous. This is generally the case in 
engineering applications. An alternate notation that you should be familiar with is the subscript 
notation for partial derivatives. Thus 

22

42

2

2

,,,,
yx

f
f

yx

f
f

x

f
f

y

f
f

x

f
f xxyyxyxxyx 



















 . Clearly the subscript notation is more 

compact! How many third derivatives exist assuming all derivatives involved are continuous? 

Answer: four. What are the dimensions of xxxyf ? Answer:    
   yx

f
f xxxy 3

 . 

 Just as a Taylor series for a function of a single independent variable, may be obtained 
one can construct a Taylor series for a function of two (or more) independent variables. This is 
however, not discussed in this document, since it arises less frequently in undergraduate level 
engineering courses. 

The concept of a total differential is extremely useful for functions of two or more 
independent variables. We will assume two independent variables (a concept that occurs in 
thermodynamics for example when one works with intensive properties of simple compressible 
substances) and that will suffice for most engineering purposes. Consider a function: 

 yxzz , ,          (22) 
in which x and y are the independent variables. The quantity z could denote density, pressure, 
fluid velocity component or other variables of interest, and x and y could denote position in two 
dimensional space or two intensive properties such as internal energy and specific volume. The 
key concept to note is that z can change as a result of changes in x or changes in y or due to 
changes in both x and y. This notion is expressed succinctly by taking the total differential of 
(22) which yields: 
 

dy
y

z
dx

x

z
dz








          (23) 

 
This arises time and again and can be confusing (compare (23) with (3) and note the similarity).  
If however, you think of it in terms of the answer to the question, what can change z, it is a bit 
easier. The first term on the right hand side of (23) denotes the change that results in z due to 

changes in x alone, while keeping y fixed. Let us break this down further. After all 
x

z




 denotes 

the rate at which z changes due to changes in x. When this result is multiplied by the change in x, 

expressed by dx, the result dx
x

z




 expresses the change in z solely due to changes in x, ignoring 

anything to do with y. Using the same reasoning, the second term on the right hand side of (23) 
may be interpreted – it expresses the change that results in z due to changes in y, while keeping x 
fixed. Adding the two contributions gives the total change or the differential dz. The value of z at 
x+dx/2 and x-dx/2 are thus given by 

2
and

2

dx

x

z
z

dx

x

z
z








         (24) 

An example of (23) is illustrated by the Gibbs equation in thermodynamics 
pdvduTds           (25) 
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in which T denotes absolute temperature, p denotes pressure, s, u, and v denote the entropy, 
internal energy, and specific volume respectively. Rewrite this in true differential form by 
dividing (25) by T. The result is 

dv
T

P
du

T
ds 

1
         (26) 

Equation (26) can be cast in the form of (23) and interpreted as such by rewriting as 

dv
v

s
du

u

s
ds








          (27) 

while noting that 
T

p

v

s

Tu

s









,
1

 actually define (absolute) temperature and pressure formally. 

You will learn more about this in a thermodynamics class (usually applicable for ME/AE/ChE 
majors). 
 
H. Simplest Ordinary Differential Equations 
 

Once you have a thorough knowledge of derivatives and partial derivatives, you have the 
essential tools to get to the next level and learn about differential equations. We will keep this 
discussion simple. We will not deal with partial differential equations in which partial derivatives 
appear. We will instead deal with equations in which only ordinary derivatives appear. Such 
equations are called ordinary differential equations (ODE’s for short). There is only one 
independent variable (often distance or time in ME courses), while more than one dependent 
variable may exist (example: velocity and acceleration). The simplest ODE is a linear, first order 
ordinary differential equation of the form: 

 

y
dx

dy            (28) 

 
Its solution is 
 

 xyxy  exp)0()(         (29) 
 

This may be obtained by separating variables in (28) and integrating: 

  dxydy /          (29a) 

and taking exponentials to obtain the solution given by (28).  At )0()0(,0 yxyx   is an 
initial condition. A more intuitive method is to think about a function, which when differentiated, 
yields back the same function (as in (28), ignoring the “  ” for the moment). The exponential 
function has this property. For positive values of  , the solution displays exponential decay, 
decreasing as x increases and approaching zero asymptotically for large values of x. The quantity 
  is usually a physically significant quantity and, since the quantity x  in (29), being the 
argument of a transcendental function (exponential in this case), ought to be dimensionless 

according to the principle of dimensional consistency, we expect the dimension   





x

1 . If x 

denotes time (in which case the symbol t is used for the independent variable, instead of x),   
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will have dimensions of 1/time, and thus 1/  with dimensions of time will be a characteristic 
time constant for the system in question. This kind of an equation arises in analysis of lumped 
heat transfer systems for example. It can also arise in problems associated with population 
growth (  > 0), radioactive decay, drug elimination within the blood stream, etc.  Note that if 
the right hand side of (28) is a general function of y, say )(yf , rendering the ODE nonlinear, it 

can be still solved by separating variables, provided the integral  )(/ yfdy can be readily 

obtained by methods of integration or by the use of a table of integrals. 
 

Another equation that arises often in engineering courses (vibrations, electrical circuits, 
wave type problems, etc) is a linear, second order ODE with constant coefficients: 

 

y
dx

yd 2
2

2

           (30) 

 
It has two linearly independent solutions xy sin  and xy cos . Note that the sine and 
cosine functions when differentiated twice, yield themselves (with a minus sign) and thus 
provide a hint to the solution to (30). The complete solution is obtained by combining these 
solutions: 
 

xCxCy  sincos 21          (31) 
 
where C1 and C2 are two constants of integration (recall a second order ODE will require two 
conditions) that are determined by suitable conditions in the problem. To get this solution 
formally, the substitution  mxy exp  is made in (30). After canceling out  mxexp  from every 

term, the resulting characteristic equation 022  m  is solved for m. Then using a basic 
property of complex numbers: 

   sincosexp ii  , where 1i ,      (31a) 
the result (31) is obtained. Complex numbers and variables are discussed in Section L. of this 
document. 

Note: If the right hand side of (30) were y , then the sine and cosine solutions will have   
in the argument making the expressions clumsy. If x denotes a spatial variable, the principle of 
dimensional consistency requires x  in (31) to be dimensionless, indicating that   should have 
dimensions of 1/length or a wavenumber. If x denotes time,   may be interpreted as a frequency 
(circular frequency would be  /(2 )). 
 
Here is a word about commonly used terminology. Obtaining a solution to an ODE may be 
referred to as integrating the equation, although one may not actually carry out an integration as 
is done to obtain tables of integrals of functions. Finally, if a problem can be reduced to an ODE, 
with suitable initial and/or boundary conditions, then the problem is considered (practically) 
solved. This is because, we have access to programs such as MATLAB or MATHEMATICA 
that can be routinely used to obtain a numerical solution to any desired accuracy. 
 
I. Integration 
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Recall that it is easy to show that the derivative of the product of two functions )(xu  and 

)(xv  is given by: 
 

dx

du
v

dx

dv
u

dx

uvd
          (32) 

Multiplying (32) by dx and rearranging gives 
vduuvdudvvduudvuvd  )(;)(       (33) 

Integrating (33) gives the formula for integration by parts that comes in very handy: 
 

  vduuvudv          (34) 

 
The concept of average value of a function over a range of the independent variable is 

important. The average value of )(xf  over the interval (a,b) is defined by 
 

  


b

a

dxxf
ab

f )(
1

         (35) 

 
If )(xf  represents hydrodynamic pressure as a function of depth from a free surface, the average 

pressure is f  (note that f  will have dimensions of force/unit area or pressure. If f denotes heat 

transfer coefficient associated with fluid flow over a flat plate, f  denotes an average heat 
transfer coefficient over the entire length of the plate. Note the dimensional consistency in (35). 
The dx and (b-a) terms have the same dimensions, so that    ff  . 
 

In some applications (ex: computing forces on planar submerged surfaces – concepts 
relevant to Civil/Mechanical/Aerospace majors), you will come across the first and second 
moments of an area.  Imagine an x-y coordinate system and a planar area located in this plane. If 
dA denotes a differential portion of this planar area (so that the integral of dA will give the total 
area A), then the quantity x dA (with dimensions of L L2 = L3) integrated over the entire area 
gives the first moment of the area about the y-axis (this is because x is the distance of the area dA 
from the y-axis) and is denoted by: 

 xdAI y           (36) 

(you can best understand this by drawing a sketch, labeling the axes, and locating the distance of 
a portion of the area dA from the y axis). The second moment of this area is given by 

 dAxI yy
2           (37) 

Cross moments, ex: xyI  may be defined. Likewise, one can define xI  and xxI . It should be 

evident that the I’s with a single subscript have dimensions of L3, while the I’s with two 
subscripts will have dimensions of L4. 
 
J. Grad, Div, Curl, and all that 
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In engineering and physics, we often come up with the notion of a field variable. These 
are variables such as temperature, strain, pressure, etc., which are scalar quantities, and velocity, 
strain, shear stress, etc., which are either vectors or tensors in general. Think of a vector as a 
quantity that has both magnitude and direction, whereas a tensor is a quantity that has magnitude 
and two directions. Often, the second direction denotes the direction of the area associated with 
the tensor. Treating field variables as continuous functions of position and time allows for 
application of general principles to differential elements and to thereby obtain partial differential 
equations that describe a conservation law. 

Given a scalar field such as temperature, the gradient of the scalar field is a vector given 
by 

 

z

f
k

y

f
j

x

f
if












 ˆˆˆ  (to be read as “Grad f”)     (38) 

 

written in a rectangular Cartesian coordinate system (RCCS). The quantities kji ˆ,ˆ,ˆ  denote the 
unit vectors along the three mutually perpendicular coordinate directions x, y, z.  Note, while f is 
a scalar, f  is a vector. In general f  is the most compact way of writing down the gradient 
function, since this symbol is fine with any coordinate system (spherical, cylindrical, etc.), while 
the right hand side of (37) is specific to a RCCS. Most textbooks can be consulted to look up the 
specific form of this vector operator for other coordinate systems. Rules for differentiation carry 
over to the gradient function. Thus, 

  fggffg           (39) 

Note that     Lff /  as required by the principle of dimensional consistency. 
 

Given a vector field ),,(ˆ),,(ˆ),,(ˆ),,( zyxRkzyxQjzyxPizyxF 


 such as velocity in a RCCS, 
the divergence of the vector field is given by 
 

z

R

y

Q

x

P
FF















 div  (to be read as “div F”)    (40) 

 
Note that grad of a scalar field is a vector, whereas, div of a vector field is a scalar. 
 
The curl of a vector field is also a vector field. It is convenient at this point to think of the symbol 
  (to be read as “del”) as an operator, which in a RCCS is given by: 
 

z
k

y
j

x
i












 ˆˆˆ         (41) 

 
An operator, such as   by itself has no meaning, but it acquires physical meaning when it 
operates on a quantity. The temperature gradient in a medium for instance is indicative of 
directions along which energy transfer in the form of heat transfer occurs. The curl of the vector 

),,(ˆ),,(ˆ),,(ˆ),,( zyxRkzyxQjzyxPizyxF 


 is defined by 
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FF ˆ curl           (42) 
 
which may be obtained by evaluating the determinant of the 33 matrix in the case of a RCC: 

























































y

P

x

Q
k

x

R

z

P
j

z

Q

y

R
i

RQP
zyx

kji

F ˆˆˆ

ˆˆˆ

ˆ   (43) 

What are the dimensions of div and curl of a vector function? Note that determinants are 
reviewed in a Section K of this document. 
 
Two integral theorems arise in engineering courses. The first is the divergence theorem 
according to which the volume integral of the divergence of a vector function F is equal to the 
surface integral of F dotted with the surface area vector of the surface enclosing the volume in 
question. This provides a handy means of converting a volume integral (meaning a quantity that 
depends on every point within a three dimensional volume) to a surface integral (which depends 
remarkably only on the properties of F at the surface bounding this volume, without regard to the 
detailed variation of F through the three dimensional space occupied by the volume). In 
mathematical terms, 
 

 
VSVSV

dAnFAdFdVF
 bounding  bounding 

ˆ


      (44) 

 
Both F and F  are presumed to be continuous over the surface and the volume. Note that the 
general convention in engineering is that area can be treated as a vector with the direction 
normal to the area and assigned positive sense in the direction outward from the surface. In (44), 
n̂  denotes the unit normal vector to the surface. Analogous to (44) that connects a volume 
integral to a surface integral, Stokes’s theorem relates a line integral over a closed curve C to a 
surface integral over a surface S that is bounded by C.  
 

    dAnFAdFldF
SSC

ˆ 


      (45) 

Note that the principle of dimensional consistency holds for (44) and (45), and is particularly 
handy when you can recall most of the formula and need help to figure out the exact result. 
 
K. Elementary Linear Algebra 
 
 Most computations in engineering will involve a system of linear algebraic equations that 
are solved most efficiently using computing tools such as MATLAB. Two kinds of problems 
arise: 
 
Type 1: 

bxA


           (46) 

where A is a square matrix of size nn , b


is a column vector of size 1n  referred to as the right 
hand side or forcing vector. The unknown is a column vector x


 (also of size 1n ), referred to as 



Essential Mathematics for Engineering Majors -S. Mahalingam 13

the solution vector. The goal is to find x


. This kind of a problem arises very frequently in 
engineering.  
 
Type 2: 

xxA
   or written alternately as   0 xIA

      (47) 
where A is a square matrix of size nn , I is an identity matrix of the same size as A (i.e., I has 
1’s on the diagonal and zeros elsewhere),   is an eigenvalue and the corresponding solution 
vector is referred to as an eigenvector.  Note that the right hand side of (47) is strictly a column 
vector with all zero entries. The goal is to find the eigenvalues and corresponding eigenvectors. 
This type of problem arises less frequently, but is equally important for all engineering majors. 
 
Determinant of a Matrix: 

In either case, it is important to have a thorough understanding of properties of a matrix. 
Review concepts of matrix addition and matrix multiplication on your own. Also note that the 
transpose of matrix, denoted by TA , is obtained by swapping the rows and columns of A, and a 
symmetric matrix is such that TAA  . The most important property that is discussed here is that 
of a determinant, defined only for square matrices. In the case of a 22  matrix,  











dc

ba
A           (48) 

the determinant is defined by: 
 

bcadAA det          (49) 

 
This notion can be extended to matrices of size nn . For a general matrix A: 

























 nnnnnnn

n

n

n

aaaaa

aaaa

aaaa

aaaa

A

1,3,2,1,

3333231

2232221

1131211









       (50) 

The determinant is obtained by the method of cofactors. The cofactor of the i-th row and j-th 
column, denoted by ijM  is a square matrix of size    11  nn  that is derived from A, by 

discarding its i-th row and j-th column. Using this definition, the determinant of A is obtained by: 
 

  
ji

ij
ji MAA

or  

1det         (51) 

 
where the summation is carried out by either summing across a row (sum over i from 1 to n) or 
down a column (sum over j from 1 to n). It is interesting to note that repeated application of (51) 
is involved in computing the determinant of the cofactor matrices. Eventually, it will involve 
finding the determinant of a 22  matrix which is defined by (49). Applying (51) to the 33  
matrix: 
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
















333231

232221

131211

aaa

aaa

aaa

A          (52) 

by expanding using cofactors across the first row )1( i  

       
   

     223132211323313321122332332211

2231322113
31

2331332112
21

2332332211
11

1

11det

aaaaaaaaaaaaaaa

aaaaa

aaaaaaaaaaA









   (53) 

or by expanding using cofactors down the first column )1( j  

       
   

     132223123113323312212332332211

1322231231
13

1332331221
12

2332332211
11

1

11det

aaaaaaaaaaaaaaa

aaaaa

aaaaaaaaaaA









   (54) 

It is easy to verify that both approaches give the same numerical value for det A – in other words 
(53) and (54) are identical. Thus if a certain row or column has a number of zero entries, it 
makes sense to expand using cofactors for that row or column. Can you figure out why 

AAT detdet  ?  The concept of determinant is also helpful in finding the inverse of a square 
matrix, denoted by 1A , such that IAA 1 . Finally, a singular matrix is one whose determinant 
is zero. In the case of a 22  matrix, the determinant can be interpreted as the area of a suitably 
defined parallelogram, while for larger sized matrices, the determinant does not have a useful 
physical meaning. 
 
Solution to Type 1 Problems 

Consider (46) 

bxA


  
The solution is obtained by Cramer’s rule, according to which, the k-th component of the vector 
x


, viz., kx  is obtained as: 

A

D
x

k

k det
 , where, 

nnkn

nk

nk

nk

nknnnn

k

k

aa

aa

aa

aa

baaaa

baaa

baaa

baaaa

D

,1,

,31,3

,21,2

,11,1

1,3,2,1,

3333231

2232221

11,1131211





























   (55) 

Note that kD is the determinant of a matrix derived from A in which its k-th column is replaced 
by the forcing vector. Master this method by applying it to matrix equations up to size 44 .  
Matrix equations of higher dimensions are solved efficiently using MATLAB using methods that 
are computationally more efficient than Cramer’s rule. 
 
Solution to Type 2 Problems 

Consider (47) 
xxA
   or   0 xIA

  
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As in the case of Type 1 problems, we will only discuss solution methods that work for small 
values of n (about 2 or 3), but become unwieldy for larger values of n. More efficient methods 
exist for finding eigenvalues and eigenvectors for larger size matrices that we will not worry 
about. To find the eigenvalues, find the characteristic equation by setting 
 

  0det  IA           (56) 
 
This will be a polynomial of degree n. Refer to the section on polynomials to learn more about 
them. Using each of the computed eigenvalues k , one can solve for the corresponding 

eigenvectors 
)()( k

k
k xxA

            (57) 

By setting an arbitrary, non-zero value for one of the components of )(kx


, the others can be 
found through the remaining set of consistent algebraic equations. Although the eigenvalues are 
unique, the eigenvectors are not – for instance an eigenvector corresponding to an eigenvalue can 
be scaled by multiplying it by a real constant, and it will still be an eigenvector. Usually, 
eigenvectors are reported in their normalized form. A normalized vector is obtained by dividing 
each of its components by the length or norm of the vector. The norm of a vector x


is defined as 


i

ix 2 . Thus, the norm of a normalized vector is unity. Most computer programs report 

eigenvectors in normalized form. Note that in the case of a diagonal matrix (meaning 
),0 jiaij   or a triangular matrix, the eigenvalues are simply the entries on the diagonal. 

 
Eigenvalues usually have a physical interpretation. In spring-mass systems subject to free 

(not forced) oscillations, the square root of an eigenvalue refers to the physical (angular) 
frequency of an oscillatory mode. The eigenvector may be interpreted as relative positions of the 
masses during oscillation in that particular mode. In solid mechanics, the stress tensor in three 
dimensions may be cast in the form of a 33  matrix that is symmetric. By choosing an 
appropriate coordinate system, the matrix can be transformed into a diagonal matrix whose 
entries refer to the principal components of stress. They are the eigenvalues of the stress tensor 
matrix. The eigenvectors are related to the direction cosines of the corresponding coordinate 
system. 

 
L. Complex Numbers and Variables 
 
The first time most students encounter complex numbers is in finding roots of a quadratic 
equation. Consider the algebraic equation: 
 02  cbxax          (58) 
The roots ,or solutions, x that satisfy (58) are: 

 
a

cabb
x

2

42 
          (59) 

When the discriminant “ cab 42  ” is less than zero, the roots are complex. For example 

49149  i7 , where i is defined by 1  (see (31a)). Note electrical engineers might 
use the symbol j instead of i. 
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A complex number z is denoted by 
 yixz            (60) 
in which x and y are real numbers, where x is denoted as the real part, )Re(zx  , and y its 
imaginary part, )Im(zy  . The conjugate of z (z as defined in (60)), denoted by z , is defined as 

 yixz            (61) 
Note that when one root of a quadratic equation is complex, the other root is its complex 
conjugate, and thus roots of a quadratic (or for that matter a higher degree polynomial) always 
appear as complex conjugate pairs. The magnitude and argument of the complex number z, 
denoted by z  and )arg(z respectively are defined by 

 





 

x

y
zyxz 122 tan)arg(;       (62) 

With these basic ideas, one can use the Argand diagram to represent a complex number in the x-
y plane by the coordinate point  yx, . Just like negative real numbers are represented by 
extending the real line (or axis) to the left of zero, complex numbers can be represented by a 
plane in which the x and y axes are referred to as the real and imaginary axes. Thus z , which is 

always positive, denotes the distance r of the point z from the origin, and )arg(z  denotes the 
angle  , measured counterclockwise with respect to the positive x-axis, made by the line 
connecting the origin to z in the complex plane. In fact noting form this construction that 

 cosrx   and sinry          (63) 
the complex number z is denoted by its alternate polar form: 

       sincossincos irririyxz       (64) 

Two complex numbers 1z  and 2z  can be added via 

    212121 yyixxzz         (65) 
in which the real and imaginary parts are added and grouped accordingly. They can be multiplied 
to readily obtain: 
       21212121221121 xyyxiyyxxiyxyixzz      (66) 

in which the main thing to note is that, by definition 12 i . Division is a bit tricky, but 
becomes easy when you learn to multiply numerator and denominator by the conjugate of the 
denominator to yield: 
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
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


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













   (67) 

wherein multiplication rules provided by (66) are used in the numerator and denominator. It is 
easy to separate the real and imaginary parts of the final result in (67). Do not commit this 
formula to memory, instead, note the trick that was used. In polar form, multiplication and 
division become quite simple. Thus, 
         21212122211121 sincossincossincos   irririrzz  (68) 
and 

 
 
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    (69) 
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in which trigonometric identities are used in (68) and (69), and the trick to perform division, 
using the complex conjugate of the denominator to multiply both numerator and denominator, is 
used to get (69). 
 The basic algebra associated with complex numbers will serve you well for most 
purposes in undergraduate classes. Advanced concepts require the idea of complex variables and 
complex functions. Only the essential ideas are introduced here. A complex function )(zfw   is 
given by 
     ),(, yxivyxuzfivuw         (70) 

in which  yxu ,  and  yxv ,  are real and imaginary parts of the function, and are themselves, 
functions of two variables x and y. Note the subtle aspect of (70), in which the independent 
variable z in )(zfw   is linked to the real and imaginary parts via x and y. Also note that (70) 
represents a mapping from the x-y or z plane to the u-v or w plane. This does not lend itself to a 
figure, quite as easily as functions of two independent variables in calculus of real functions. 
Perhaps the most important concept is that of an analytic function which we will not define 
formally. In very simple terms, it is a function that is well behaved without any singularities. 
Thus zzwzw 3, 2   are analytic functions, while zw /1  is analytic everywhere except at 

0z  where it is singular, and  )2)(3(/1 izz  has singularities at izz 2,3  . The 
exponential function is very important and is defined as: 

    yiyxezw iyx sincos)exp(exp  
      (71) 

and is analytic everywhere in the complex plane. It is defined in such a manner so that it reduces 
to the familiar exp(x) when the imaginary part of z, viz., y is identically zero. Without getting 
into details, it has the property that 

 )exp()exp( zz
dz

d
          (72) 

which is desirable when the imaginary part of z is zero and the result holds for exp(x).  Similarly 
cos (z) and sin (z) are defined so that they become the familiar cosine and sine functions of real 
variables that we are familiar with when the imaginary part of z is identically zero. 

 
   

i

zizi
z

zizi
z

2

expexp
sin;

2

expexp
cos





     

 (73) 
Defined in this manner, all trigonometric identities that you are familiar with, work fine for their 
complex counterparts (example: 1sincos 22  zz , etc.). 
 
Finally, analytic functions are analogous to continuously differentiable functions in calculus of 
real functions. Real, continuous functions are generally useful in regions where this behavior 
holds, i.e., the function is continuous and differentiable, and not very useful at locations or 
regions where the function is “singular” or blows up. However, complex functions are actually 
most useful at locations where they are singular! When you work with vibrations or control 
systems (either as a ME/AE/EE major), you will find that identification of singularities of a 
complex function and the consequent behavior of the system that is being modeled are closely 
connected. To study fluid flow around an airfoil (ME/AE), the flow field is constructed by a 
suitable combination of complex functions with singularities distributed in such a manner as to 
generate the shape of the airfoil. 


